조회수 35
자료실
AI 활용신약DB 상세
조회수 35
본 DB에서는 해당 논문의 원본데이터 및 이를 활용한 다른 논문의 전처리 데이터의 정보를 제공하고 있습니다.
원저작물에 대한 권리는 해당 연구자 및 기관에 있습니다.
Modeling the interaction between proteins and ligands and accurately predicting their binding structures is a critical yet challenging task in drug discovery. Recent advancements in deep learning have shown promise in addressing this challenge, with sampling-based and regression-based methods emerging as two prominent approaches. However, these methods have notable limitations. Sampling-based methods often suffer from low efficiency due to the need for generating multiple candidate structures for selection. On the other hand, regression-based methods offer fast predictions but may experience decreased accuracy. Additionally, the variation in protein sizes often requires external modules for selecting suitable binding pockets, further impacting efficiency. In this work, we propose FABind, an end-to-end model that combines pocket prediction and docking to achieve accurate and fast protein-ligand binding. FABind incorporates a unique ligand-informed pocket prediction module, which is also leveraged for docking pose estimation. The model further enhances the docking process by incrementally integrating the predicted pocket to optimize protein-ligand binding, reducing discrepancies between training and inference. Through extensive experiments on benchmark datasets, our proposed FABind demonstrates strong advantages in terms of effectiveness and efficiency compared to existing methods. Our code is available at Github3